Noble Elements Summary

Conveners: Jonathan Asaadi, Jen Raaf March 22, 2021 CPAD 2021

Excellent presentations in our parallel sessions!

Thursday Friday

A Digital Tension Measurement Device for Multi-Wire Particle Detectors	Shion Kubota	Augmented Signal Processing in Liquid Argon Time Projection Chambers with a Deep Neural Network	K Haiwang Yu 🥝
Stony Brook, NY	11:00 - 11:20	Stony Brook, NY	11:00 - 11:20
Measuring trace krypton for the LUX-ZEPLIN dark matter search	John Silk 🥝	Using Photo-converting Dopants to Improve Large LArTPC Performance	Joseph Zennamo 🥝
Stony Brook, NY	11:20 - 11:40	Stony Brook, NY	11:20 - 11:40
Modeling Impurity Concentrations in Liquid Argon Detectors	Yichen Li et al. 🥝	QPIX, a novel pixel technology for very large noble element detectors	Austin McDonald 🥝
Stony Brook, NY	11:40 - 12:00	Stony Brook, NY	11:40 - 12:00
Purity monitoring for ProtoDUNE-SP	Wenjie Wu 🥝	High pressure gas TPC technology for neutrinoless double beta decay searches: The NEXT program	Jonathan Haefner 🥝
Stony Brook, NY	12:00 - 12:20	Stony Brook, NY	12:00 - 12:20
Low-energy Monoenergetic Neutron Production with a DD-Neutron Source for sub-keV Nuclear Recoil Will Taylor		Metastable Liquids: Breakthrough Technologies for Dark Matter and Neutrinos	rof. Matthew Szydagis
Calibrations in the LUX and LZ Experiments		Stony Brook, NY	12:20 - 12:40

Scintillation and Optical Properties of the Low-Background Scintillator, PEN	Mrs Brennan Hackett 🥝
Stony Brook, NY	13:00 - 13:20
Wavelength-Shifting Performance of Polyethylene Naphthalate Films in a Liquid Argon Envir	ronment Ryan Dorrill 🥝
Stony Brook, NY	13:20 - 13:40
Light production in liquid and gaseous argon	Dr Carlos Ourivio Escobar 🥝
Stony Brook, NY	13:40 - 14:00
Improving the Proportional Scintillation Signal of Liquid Argon by Xenon Doping	Ethan Bernard 🥝
Stony Brook, NY	14:00 - 14:20
Modeling xenon and argon physics with the Noble Element Simulation Technique (NEST)	Vetri Velan 🥝
Stony Brook, NY	14:20 - 14:40
Building low background kton-scale liquid argon time projection chambers for physics disco	overy Christopher Jackson 🥝
Stony Brook, NY	14:40 - 15:00

Designing and building a pair of scintillating bubble chambers for WIMPs and reactor CEvNS

Stony Brook, NY

13:00 - 13:25

HeRALD - light dark matter search with superfluid Helium-4

Stony Brook, NY

13:25 - 13:50

2019 DOE Basic Research Needs Study

Noble Elements Priority Research Directions

Priority Research Direction (PRD)	Technical Requirement (TR)		
PRD 4: Enhance and combine existing modalities to in-	TR 1.3.3, 2.1, 2.4, 2.5, 2.7, 2.9, 3.3, 3.6,		
crease signal-to-noise and reconstruction fidelity	3.9, 3.12, 3.13, 3.15, 3.17, 3.19		
PRD 5: Develop new modalities for signal detection			
PRD 6: Improve the understanding of detector micro-	TR 2.8, 2.9, 3.3, 3.6, 3.9, 3.12, 3.13,		
physics and characterization to increase signal-to-noise and	3.15, 3.17, 3.19		
reconstruction fidelity			
PRD 25: Advance material purification and assay methods	TR 2.3, 3.1, 3.4, 3.7, 3.10		
to increase sensitivity			
PRD 26: Addressing challenges in scaling technologies	TR 2.1, 2.3, 2.4, 2.7, 2.9, 3.2, 3.5, 3.8,		
	3.11 , 3.14, 3.16, 3.18, 3.20		

Table 15: Table mapping Priority Research Directions to Technical Requirements.

2021 March 22 J. Raaf CPAD 2021

PRD 4: Enhance and combine existing modalities to increase S:N and reconstruction fidelity

9.6 eV

J. Zennamo

Photon Conversion

- These chemicals work by having an ionization energy near the scintillation photon energy
 - · Convert scintillation light into ionization charge
- Literature has explored many potential choices (*), the most commonly used:
 - Tetramethylgermane (TMG), (CH₃)₄Ge
 - Trimethylamine (TMA), N(CH₃)₃
 - Triethylamine (TEA), N(CH₂CH₃)₃

These chemicals have a long track record of demonstrations in the literature starting back in the early 1970s

(*) D.F. Anderson, Nucl. Instr. and Meth. A 242 (1986) 258

J. Zennamo, Fermilab

Other Benefits of Xenon-Doping

- On top of modifying the detector's performance ¹³⁶Xe is also a 0vββ candidate isotope
 - Doping with ¹³⁶Xe could enable a 100-ton scale search for 0vββ
- Concept: Dope DUNE FD module LAr with 2% 136 Xe (Q_{BB} = 2.5 MeV)
 - Enabling a >300-ton mass of xenon to sit within a 2 m fully active LAr buffer, eliminating most surface backgrounds
 - Additional background suppression comes via multisite tagging
- To enable such a search one needs to utilize 42Ar depleted LAr

J. Zennamo, Fermilab

Publication pending, A. Mastbaum, F. Psihas, J.Zennamo

9

Scintillation y Energy

LAr+Xe 7.0-9.6 eV

Ionization Energies

TMG 9.2 eV

TMA 7.8 eV

TEA 7.5 eV

(In LAr these drop by ~0.7 eV)

LAr

PRD 4: Enhance and combine existing modalities to increase S:N and reconstruction fidelity

E. Bernard S2 Light Measurement Improvement by Addition of Xenon To Argon

Improvements in light production and sensing of the S2 pulse

- Xe containing excimers emit at longer wavelengths that are more efficiently measured.
- Xe containing excimers emit their light faster, shortening pulse duration.
- Xe* has a lower threshold for excitation → more excitations per drift electron

Improvements in ionization yield of the liquid (speculative)

- Xenon has a lower ionization energy that argon → more electrons per unit deposited energy
- Xenon may be ionized by the Penning process Ar* + Xe → Ar + Xe+ + e-

PRD 4: Enhance and combine existing modalities to increase S:N and reconstruction fidelity

PRD 4: Enhance and combine existing modalities to increase S:N and reconstruction fidelity

PRD 5: Develop new modalities for signal detection

C. Escobar

NIR Observed Signals

Clean liquid phase:

- SiPM bias voltage variation
- Significant reduction of the observed signal on Nov 17 ~ noon

Gas 1 phase:

- · Major increase of the observed signal
- Emergence of a slow component Dirty liquid phase:
- Observed signal comparable to the end of clean liquid phase

Gas 2 phase:

- Fast component comparable with the Gas 1, ~ steady
- Increase of the total/ slow component

PRD 5: Develop new modalities for signal detection

Metastable liquids: phase transition detectors

- Snowball Chamber (super-cooled water)
- Scintillating Bubble Chamber (super-heated LAr-LXe)

The Basics: How This Works

- A pure liquid can be made "metastable," making it sensitive to incoming particles
 - For supercooling, this involves dropping temperature below freezing sans freezing, relying on a sufficiently clean, smooth container
- Controlling the temperature and/or pressure allows one to control the thresholds in both energy as well as dE/dx or critical radius for nucleation, enabling signal vs. background discrimination (e.g., betas and gamma-rays)
 - Lower temperature means both thresholds lower, in supercooling. Like bubble chamber, but in reverse!
- Have only done water so far. What does it have to do with noble elements? - Could do Xe or Ar to capitalize on scintillation for E

R. Coppejans Chamber Schematic Cryomech AL300 Cryocooler /acuum Jacket Flange Vacuum Jacket Body Condensers Pressure Vessel Suspension Rods Pressure Vessel LCF, @ 130K LAr + 100ppm LXe @ 130K Reflector Screens Insulation Text Legend - Thermal Control Outer Silica Jar Bubble Imaging Pressure Control Evaporators Jar Bellows Hvdraulic Fluid Target Fluid Inner Silica Jar Scintillation Detection LCF. @ 90K Acoustic Sensors Structural Pressure Bellows Bellows Flange Piston Shaft Cylinder support rods Vacuum Jacket Legs Hydraulic Cylinder

PRD 6: Improve the understanding of detector microphysics and characterization to increase S:N and reconstruction fidelity

PRD 6: Improve the understanding of detector microphysics and

characterization to increase S:N and reconstruction fidelity W. Taylor

PRD 6: Improve the understanding of detector microphysics and

CPAD 2021

2021 March 22 I. Raaf

PRD 25: Advance material purification and assay methods to increase sensitivity

PRD 25: Advance material purification and assay methods to increase sensitivity

R. Dorrill

B. Hackett

Conclusion

- PEN is a novel scintillating material
- It has potential applications in both noble detectors and low background experiments
- PEN has a demonstrated structural stability
 - Yield strength higher than copper at cryogenic temperatures
- Injection molding can prevent crystalline structures forming in PEN
 - Improved optical clarity
 - Alternative geometries other than commercially available films

Samples Tested

Data Sample	Origin	Trade Name	Thickness	Properties	
PEN01 PEN02 PEN03	Piedmont	Teonex Q65FA	0.125m	Ultra-clear	
	ORNL	Teonex TN-8065S	1.5mm	Low crystallinity, clear	
	Millipore Sigma	Teonex Q53	0.125mm	Biaxially oriented, hazy	
PEN04	Goodfellow	Teonex Q53	0.125mm	Biaxially oriented, hazy	
TPB	Manchester Univ.		0.003mm	Evaporatively deposited	
Bare	-		-	No WLS layer applied	

The bare reflector (a), PEN01 (b), PEN04(c), and TPB (d). Note PEN04's hazy appearance compared to PEN01.

Alternative WLS materials with low radioactivity

Also relevant for PRD #4!

PRD 25: Advance material purification and assay

I. Raaf

methods to increase sensitivity

How to build this?

- Assay management
 - Radiopurity.org based assay manager
 - ✓ Interface for non-experts to request assays
 - ✓ Guided input of relevant information
 - ✓ Low background experts guide distribution of assay work
 - √ Tracks samples and locations
- Assay results and triage
 - Background Explorer
 - ✓ Toolkit for modeling radioactive backgrounds
 - √ Rapid evaluation of effect of new assay measurement on background tables
 - ✓ Originally developed for SuperCDMS by Ben Loer
 - √ https://aithub.com/bloer/baexplorer-demo

2021 March 22

CPAD 2021

15

Acrylic box with reflective foils

1 kton fiducial volume

Underground argon

Water shielding

PRD 26: Addressing challenges in scaling technologies

New techniques for measuring wire tensions in future large TPCs...

A Novel Electrical Method to Measure Wire Tensions for Time Projection Chambers Nucl.Instrum.Meth.A 915 (2019) 75-81

2021 March 22 J. Raaf CPAD 2021 16

PRD 26: Addressing challenges in scaling technologies

R&D to enable to ton-scale OnuBB

J. Haefner

NEXT-Ton: basics Two approaches developed in parallel: · Phase 1, High Definition: incremental approach. Require a larger using/improving existing technology. Phase 2, Barium Tagging: based on disruptive new detector (10x mass concept (SMFI Ba++ tagging). of N100) With larger size, Phased approach · ~1 ton of 136Xe introduced per phase. some challenges: · Ultra pure materials. SiPMs as the only sensor. Larger volume to calibrate Longer drift Phase 1: m_{jq} (eV) · Improves topological signature, improves energy distance resolution Must maintain: Reduces radioactive budget (no PMTs) Energy plane made of large area SiPMs (design excellent similar to that of Dark Side) resolution 10-1 · Potential to reduce SiPM dark count by cooling topological detector · 2.6 x 10-6 cts / keV-kg-year total background rate rejection power EXT Phase 1 10-2 Phase 2: NEXT Phase 2 · Tracking and energy measured in anode. Cathode implements Barium Tagging System · Virtually background free 10^{-3} 10-2 10-1 24 m_{light} (eV)

Closing Remarks

- □ Lots of interesting results and advances in techniques, tools, and instrumentation
- ☐ Focus: how to do things at larger scale with higher sensitivity
- □ Looking forward to see how much farther we will be able to advance by the next CPAD!

Thank you to all the session speakers for their excellent talks!